
© Copyright 2018 Xilinx

Stefano Stabellini

Xen Maintainer, Principal System Software Engineer

2018/09

Xen for Embedded, IoT, Edge

© Copyright 2018 Xilinx

Lightning Xen Update

© Copyright 2018 Xilinx

Very Embedded Requirements

˃Real Time
Low Deterministic IRQ Latency

Static Partitioning

Real Time Schedulers

˃Short Boot Times

˃Device Virtualization
Device Assignment

Device Sharing
Driver Domains

VM to VM communications

˃Certifications
Small Code Base

Type-1

>> 3

© Copyright 2018 Xilinx

Static Partitioning

>> 4

sched=null vwfi=native

© Copyright 2018 Xilinx

Static Partitioning

>> 5

sched=null vwfi=native

2.5 us

© Copyright 2018 Xilinx

VM to VM communication mechanisms

˃Libvchan
Linux LIbrary

Direct VM to VM channel based on a ring on shared memory

libxenvchan_send and libxenvchan_recv

˃PVCalls
Socket API virtualization

VM to VM communications mediated by the backend domain (dom0)
“lo” as an inter-VMs communication namespace

˃V4V
Linux library and hypercall

VM to VM communication mediated by Xen

Trivial to implement in your kernel
Not fully upstream

>> 6

© Copyright 2018 Xilinx

Shared Memory

˃Completely Configurable
Support any memory attributes including cacheable memory

˃No need for Xen support to use it

˃Can export the memory to Linux userspace and use OpenAMP

>> 7

static_shm = ["id=ID1, begin=0x40000000, size=0x1000, role=master"]

static_shm = ["id=ID1, offset=0, begin=0x48000000, size=0x1000, role=slave"]

DomU DomU

Xen

OpenAMP

© Copyright 2018 Xilinx

Reducing Code Size

>> 8

© Copyright 2018 Xilinx

Certifications

>> 9

Make xen.git certifiable:

• Reduce code size

• Fix compliance violations

reported by PRQA

Ideas on how to do

certifications in a

Xen Project (Linux

Foundation) context

© Copyright 2018 Xilinx

Dom0-less

>> 10>> 10

U-Boot

Xen

Dom0 / DomU DomU 1 DomU 2

CPU0 CPU1 CPU2

loads into memoryloads into memory

© Copyright 2018 Xilinx

Dom0-less

>> 11>> 11

U-Boot

Xen

Dom0 / DomU DomU 1 DomU 2

CPU0 CPU1 CPU2

boots

boots

© Copyright 2018 Xilinx

Secure Containers at the Edge

© Copyright 2018 Xilinx

The Problem

>> 13

Package applications for the target
Contain all dependencies

Easy to update

Independent lifecycle

Run applications on the target
Run in isolation

No interference between applications

© Copyright 2018 Xilinx

The Problem

>> 14

Package applications for the target
Contain all dependencies

Easy to update

Independent lifecycle

Run applications on the target
Run in isolation

No interference between applications

© Copyright 2018 Xilinx

The Problem

>> 15

Package applications for the target
Contain all dependencies

Easy to update

Independent lifecycle

Run applications on the target
Run in isolation

No interference between applications

© Copyright 2018 Xilinx

Packaging vs. Runtime

OCI Image Spec vs. OCI Runtime Spec

© Copyright 2018 Xilinx

The problem with
Linux namespaces

© Copyright 2018 Xilinx

Cloud-

native App
Malicious App

Linux kernel

POSIX

Cloud-

native App

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

© Copyright 2018 Xilinx

Cloud-

native App
Malicious App

Linux kernel

POSIX

Cloud-

native App

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

© Copyright 2018 Xilinx

Cloud-

native App
Malicious App

Linux kernel

POSIX

Cloud-

native App

Large surface of attack

On average, 3 privilege

escalation vulnerabilities per

Linux release!

© Copyright 2018 Xilinx

From “Understanding and Hardening Linux Containers” by NCC Group:

• Run unprivileged containers (user namespaces, root capability, dropping)

• Apply a Mandatory Access Control system, such as SELinux

• Build a custom kernel binary with as few modules as possible

• Apply sysctl hardening

• Apply disk and storage limits

• Control device access and limit resource usage with cgroups

• Drop any capabilities which are not required for the application within the container

[...]

Security hardening techniques

© Copyright 2018 Xilinx

[...]

• Use custom mount options to increase defense in depth

• Apply GRSecurity and PAX patches to Linux

• Reduce Linux attack surface with Seccomp-bpf

• Isolate containers based on trust and exposure

• Logging, auditing and monitoring is important for container deployment

• Use hardware virtualization along application trust zones

Security hardening techniques

© Copyright 2018 Xilinx

Security hardening techniques

>> 23

Securing Linux Namespaces is possible but very difficult
It requires specific knowledge of the cloud native app

Auditing and monitoring should performed everywhere

Using virtualization for isolation is still recommended

© Copyright 2018 Xilinx

Linux Namespaces: very embedded problems

˃Mixed-criticality is not supported

˃Limits on resource utilization are hard to enforce

˃Real-Time support is difficult

˃Certifications are very difficult

>> 24

© Copyright 2018 Xilinx

The Solution: Xen as Container Runtime

˃Security, Isolation and Partitioning
Multi-Tenancy

Mixed-Criticality Workloads

˃Hardware Access to Applications

˃Real-Time Support

˃ ViryaOS: a ready-to-use runtime environment for VMs and Secure Containers

>> 25

© Copyright 2018 Xilinx

The Problem #2

˃Cross-building multiple VMs is difficult

˃Assembling the output in a single runnable image is a manual process

>> 26

© Copyright 2018 Xilinx

Embedded and IoT use pattern

˃Typically users know all the VMs they need beforehand

˃They still need to:
Build them all, plus Xen and Dom0

Install all images on target

Partition the hardware using device assignment

- Edit the Dom0 device tree
- Generate appropriate device trees for DomUs with device nodes

Plan for images upgrades and security fixes

>> 27

© Copyright 2018 Xilinx

It’s a lot of work!

© Copyright 2018 Xilinx

You think this is bad enough...

...then you try disaggregation

© Copyright 2018 Xilinx

Current Status

˃Everybody has their own scripts and handcrafted solutions
They are limited

Only target one use-case

Limited support for driver domains and service domains

Only support one hardware platform

˃ We would all benefit from a unifying effort

>> 30

© Copyright 2018 Xilinx

ViryaOS

A proposal for a new Xen Project sub-project

© Copyright 2018 Xilinx

ViryaOS

˃a Secure Xen based runtime

˃Containers supported natively

˃a turnkey solution

˃a Flexible build system

˃support aarch64 and x86_64

˃Targeted at embedded and IoT

>> 32

© Copyright 2018 Xilinx

BUILD RUNTIME

User

AppUser

App

ViryaOS Build

App

ViryaOS

© Copyright 2018 Xilinx

ViryaOS: Runtime

˃Dynamically deploy VMs and Secure Containers

˃Containers are run securely, transparently as Xen VMs
1 Kubernetes Pod per VM

See KataContainers and stage1-xen

˃Measure Boot

˃System Software updates and Containers updates

˃Uses Disaggregation, Service Domains, and Driver Domains

>> 34

© Copyright 2018 Xilinx

VIRYA OS

Xen

Dom0

Containers/

DomUs

Hardware

Secure Containers Runtime

ViryaOS: Runtime

© Copyright 2018 Xilinx

Xen

Dom0

Domain

Manager DomUs

Hardware

Secure
Containers

Runtime

Internal API

© Copyright 2018 Xilinx

Xen

Dom0

Domain

Manager DomUs

Hardware TPM

Network

Manager

NIC

TPM

Manager

Secure
Containers

Runtime

Internal API

© Copyright 2018 Xilinx

ViryaOS: Build

˃a multi-domain build system

builds multiple domains in one go

˃Create a runnable SD Card image from multiple domain builds

˃Each domain build is independent and run in a Container

˃Pre-configures device assignments to VMs

˃Made for disaggregated architectures

>> 38

© Copyright 2018 Xilinx

Image

Builder

SD

Card

Image

apks

Image.

gz

Dom0 -

Alpine Linux

Dom0 kernel

- Yocto

Dom1 DriverD

- Yocto
Rootfs

Dom2 DriverD

- Alpine Linux apks

ViryaOS: Build

© Copyright 2018 Xilinx

ViryaOS: Build

˃Everything builds in a Container

˃Support cross-builds (aarch64 on x86) with qemu-user

˃Support any build systems for domain builds

Enable mixed Alpine Linux / Yocto environments

Rootfs and kernel can be built independently

˃Support multiple DomU build output formats

˃The DomU build output is stored in a container

Intermediate artifacts can be pulled from the Docker Hub to speed up the build

>> 40

© Copyright 2018 Xilinx

Status

˃Very early stage, experimental

˃Interest, but no company backers yet, community driver

˃Subscribe to the mailing list to learn more and participate!

˃Initial implementation available for:
SDK

Containers-driven build

Yocto kernel build

Imagebuilder

>> 41

https://lists.xenproject.org/mailman/listinfo/unofficial-mojo-os

Adaptable.

Intelligent.

© Copyright 2018 Xilinx

sstabellini@kernel.org

stefanos@xilinx.com

